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ABSTRACT 

 

 Volatile Organic Compounds (VOCs) are unavoidable aspects of foods and their 

packaging. Some VOCs provide pleasant odors and contribute to flavor profiles, while 

others can cause negative health and environmental effects. VOCs are most commonly 

measured using headspace gas chromatography, and more recently, kinetic techniques 

such as solid phase microextraction (SPME).  In microwave popcorn, diacetyl and 

possible other related substances (DAPORS) have recently become an emerging 

concern. Diacetyl was first discovered to cause bronchiolitis obliterans (BO) in 

microwave popcorn plant workers, but some claim levels of these compounds in 

microwave popcorn is of concern to consumers; particularly because of the high 

temperatures reached during cooking. Eight DAPORS were analyzed using SPME/GC-

MS in both high-fat and low-fat varieties of microwave popcorn.  Results found elevated 

levels of diacetyl and 2,3-pentanedione in low-fat varieties. Diacetyl was below the limit 

of detection in high-fat varieties.  Because of the close proximity of these compounds to 

both plant workers and the consumers, solutions are now being developed to monitor 

VOC contamination in real time during manufacture of microwave popcorn. 

Additionally, real-time monitoring technologies can be applied to a wide variety of 

compounds and packaging substrates to monitor  organic and inorganic contamination. 

A combination sensor array technology was developed in conjunction with a proprietary 

neural network. The array was successfully trained to detect and predict contamination 

in thermoplastics. This technology has application in detecting VOCs of interest both in 

total concentration, and speciation of certain chemical functional groups. 
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CHAPTER I 

GENERAL INTRODUCTION  

 

Nearly every food product sold in the market today is contained and protected by 

packaging. Consumption of food packaging has accelerated in recent years, with net revenues of 

over $39 billion globally in 2016 between paper and plastic materials (Hurley, 2017; Matsterson, 

2016). Materials to make food packaging can be sourced from a variety of feedstocks but must 

comply with existing government regulations, such as those outlined by the US Food and Drug 

Administration, and the European Union. One such parameter of these regulations is the 

influence of volatile organic compounds on food safety and quality.   

Volatile Organic Compounds (VOCs) are small molecules (i.e.- carboxylic acids, 

alkanes, ketones, alcohols, aldehydes, etc.) which have boiling points that make it possible for 

them to evaporate under atmospheric or elevated temperatures. A VOC is any organic compound 

having an initial boiling point less than or equal to 250° C measured at a standard atmospheric 

pressure of 101.3 kPa (EPA, Envrionmental Protection Agencey (EPA), 2016). VOCs can come 

from a variety of sources throughout manufacture, such as: material synthesis and pulping (Lin et 

al., 2011), extrusion and forming (Ezquerro et al., 2003; Feigenbaum et al., 2002), adhesive and 

printing inks (Aznar et al., 2015; Begley et al., 1991; Canellas et al., 2015), and the use of 

recycled feedstocks (Biedermann et al., 2013; FDA, 2006; Franz et al., 2004; Grob et al., 2009).  

In food packaging, VOCs are more likely to migrate through the many different layers of a 

laminated package into food because of higher diffusion rates and low molecular weights (Nerin 

et al., 2009). Current analytical techniques can successfully determine substances such as 

residual solvents or monomer, in low concentrations and complex matrices.  



www.manaraa.com

2 

 

Detection of VOCs in Packaging 

Detection of VOCs in both food and packaging has long been an important parameter to 

determine safety and quality of raw materials and finished goods. Analysis of VOCs can be used 

to determine a variety of important aspects of a food system, such as food or packaging 

composition, or contribution of packaging or ingredients to off flavors or odors. Historically, 

organic small molecules would be extracted via an appropriate solvent and then subsequently 

analyzed using liquid, and later in the 1950’s, gas chromatographic separation techniques for 

volatile substances (Bartle et al., 2002). Headspace sampling techniques (where an aliquot of gas 

is sampled from a sample in a heated, sealed vial) were also developed in conjunction with gas 

chromatography (Poole, 2012). 

The origins of headspace analysis using a sealed container are unclear, however, the 

technique has grown in popularity over the last 50 years with the advent of automated headspace 

gas chromatography in in the late 1960’s (Poole, 2012). Later, solid-phase microextraction 

(SPME), a kinetic-based extraction technique, was developed by fixing polymer sorbents (i.e.- 

polydimethylsiloxane) fixed to various substrates (i.e.- titanium wire) for a predetermined 

amount of time. (Barnes et al., 2009). This technique has been successfully applied to analysis of 

a variety of samples, including flavor compounds and packaging materials (Ezquerro et al., 2002; 

Johnson et al., 2012; McCoy et al., 2017; Rosati, 2007).  

 

Real-time Detection of VOCs in Packaging Manufacturing 

Recently, real-time monitoring technologies have been developed to monitor VOCs in-

situ. This allows for continuous monitoring with good sensitivity at ambient conditions (Dai et 

al., 2015; Hierlemann et al., 2000; Liao et al., 2013; McCoy et al., 2017). Additionally, if 



www.manaraa.com

3 

 

packaging is formed from recycled materials, unwanted VOCs may be present in the finished 

article if clean-up parameters are not controlled for. Thus, this technology has multiple 

applications for monitoring safety and quality of food and packaging materials for both the plant-

worker and the consumer.  

The objective of this work was to characterize and quantify the level of DAPORS in 

high-fat and low-fat varieties of microwave popcorn, and to explore potential real-time solutions 

to monitor VOC levels in both food and packaging systems. It is expected that levels of diacetyl 

and other α-dicarbonyl substances will not be will be in quantifiable levels, but will not be in 

levels of inhalative concern.  

 

Diacetyl and Possible Other Related Substances in Microwave Popcorn  

Popcorn production in the United States is a $1.9 billion industry with $140 million in 

exports. 45.3% ($860.7 million) of this industry is comprised of un-popped popcorn most 

popularly sold in microwavable packaging (D'Costa, 2016). This is a contraction from the 

segments peak of $900 million in 2012, while the ready-to-eat (RTE) segment has seen 

tremendous growth of over 60% in the same period (Watson, 2015). While RTE sales have 

mostly expanded because of a renaissance of innovative branding and exotic flavors, some report 

potential health concerns of microwave popcorn to consumers, specifically flavorings and 

coatings (Egilman et al., 2012; Hari, 2013; Schafer, 2015). 

BO is an inflammatory condition that affects the bronchioles of the lung, the smallest 

airways within the organ (Appendix I, Figure 1). Many different chemicals can cause lung injury 

of this kind, such as nitrogen oxides, welding fumes, and ammonia (King Jr, 2003). Symptoms of 

BO include a dry cough; shortness of breath; and/or fatigue and wheezing in the absence of a 
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cold or asthma (King Jr, 2003; Yousem et al., 1992). Repeated inhalative exposures to 2,3-

pentanedione have been shown to cause fibrosis of intra-pulmonary airways in rats, 

demonstrating symptoms similar to BO in humans (Morgan et al., 2012). 

 

Toxicology of DAPORS 

Endogenous α-dicarbonyl compounds, such as those found in DAPORS (particularly 

diacetyl and 2,3-pentanedione) are reactive chemical species associated with the tendency to 

form cross-links with proteins (Miller et al., 2005). Furthermore, this same functional group has 

the capacity to form advanced glycation end products, or proteins (i.e.- arginine) that bind to 

sugar molecules (i.e.-glucose), specifically its electron-attracting carbonyl groups inherent to the 

structure (Figure 1.1) (Anders, 2017; Roberts et al., 1999).  

 

Figure 1.1. Products of the reaction of diacetyl with Nα-acetylarginine and with 2-

deoxyguanosine (Anders, 2017). 
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2,3-pentanedione has been reported to be even more reactive than diacetyl (Epperly et al., 

1989; Flake et al., 2016; Hubbs et al., 2012). Acetoin (3-hydroxy-2-butanone) is a structurally 

similar compound to diacetyl, and is often included in may butter flavor formulations. However, 

an α-hydroxyketone in acetoin replaces the reactive α-diketone associated with the toxicity of 

diacetyl and 2,3-pentanedione (Figure 1.2) (Hubbs et al., 2012). To confirm this phenomenon, 

the US National Toxicology program (NTP) conducted a 90-day study on inhalative exposure to 

diacetyl and acetoin in Sprague-Dawley rats. Significantly higher levels respiratory tract lesions 

from exposures as low as 25ppm of diacetyl were found in both rats and mice when compared to 

acetoin (National Institute for Occupational Safety and Health (NIOSH), 2016).   

 

Figure 1.2. Structural identification of diacetyl, acetoin, and 2,3-pentanedione 

Numerous studies have linked BO to inhalative exposure to ketone-type flavoring 

compounds such as diacetyl (Boylstein et al., 2006; Fedan et al., 2006; Flake and Morgan, 2016; 

Hubbs et al., 2008; Lockey et al., 2009; Rigler et al., 2010; Starek-Swiechowicz et al., 2014; van 

Rooy et al., 2007). Other studies claim microwave popcorn could pose a significant health risk to 

consumers (Egilman et al., 2011). These claims have been used to justify several substantial 

lawsuits in both plant workers in microwave popcorn facilities and consumers.  
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Litigation Involving BO and Diacetyl 

In May of 2000, workers from a microwave popcorn plant in Missouri reported a fixed 

airway obstruction of the lungs; a disease known as bronchiolitis obliterans (BO) (Akpinar-Elci 

et al., 2005; Hubbs et al., 2008; Kreiss et al., 2002). Workers in manufacturing facilities of 

popcorn oil had developed similar severe symptoms of bronchiolitis obliterans, who filed a 

lawsuit against their employers in Missouri, Montana, Illinois, Nebraska, and Iowa. Plaintiff 

verdicts in Missouri ranged from $2.7 million to $20 million from 2004 to 2008. $7 million and 

$30.4 million verdicts were awarded to former Iowa and Illinois popcorn butter flavor mixer 

workers, respectively (Finley, 2014; Lehr, 2010). Manufacturers of microwave popcorn and 

other popcorn oils with various butter flavorings have since employed rigorous safety 

precautions to protect workers from such severe exposure in future. Additionally, the US 

Occupational Safety and Health Administration (OSHA) set Time Weighted Averages (TWAs) 

for exposure to DAPORS. In 2007, one individual had consumed so much microwave popcorn 

he developed a case of bronchiolitis obliterans (the media had thusly named it ‘popcorn lung’), 

and won a $7.2 million verdict against several retailers and brand-owners for his condition (CBS 

News, 2012).  

 

Regulatory Environment of Diacetyl 

The United States National Institute for Occupational Safety and Health (NIOSH) 

conducted a thorough risk assessment using data from both animal and human inhalation studies. 

In October of 2016, NIOSH established a time weighted average recommended exposure limit 

(TWA REL/8hr) of 0.005ppm and a short-term exposure limits (STEL/15 min) of 0.025ppm for 

diacetyl (McKernan, 2016). The American Conference of Governmental Industrial Hygienists 
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(ACGIH) has also recently adopted Threshold Limit Values (TLV/8hr) of 0.01ppm and a STEL 

of 0.02ppm (Clark et al., 2015). However, some studies claim that exposures to flavoring 

chemicals in the workplace did not produce and increased risk of pulmonary health, as previous 

studies were biased based on the inherent correlation found within longitudinal spirometric 

testing (Ronk et al., 2013).  

Although the cases presented deal with large volumes of popcorn oil, some claim that the 

amount found in individual units of microwave popcorn is enough to cause disease over a long 

period of time (Egilman and Schilling, 2012). Some of these claims may be justified given the 

high temperatures associated with cooking a bag of microwave popcorn; particularly, the 

inherent design of a temperature ‘self-regulating’ microwave susceptor to reach 200˚C (Figure 

1.3) (Regier, 2014).  

 

 

Figure 1.3. Temperature of self-regulating susceptor during cooking (Regier, 2014) 

 

Microwave Popcorn Bag Composition 

A microwave popcorn bag contains multiple laminations of various kinds of paper, 

adhesives, susceptors, and coatings (Jackson, 1995). Microwave popcorn bags are generally 
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made by laminating paper feedstock with an aluminum, vapor-deposed, Polyethylene 

Terephthalate susceptor embedded within the inner and outer layers of the package (Figure 2) 

(Moseley et al., 2000). The inner and outer layers can be coated with various hydro- and 

lipophobic coatings, which are generally made using perfluorinated chemicals (Jackson, 1995).  

Increased financial costs and the environmental impact of harvesting and processing have 

allowed some paper mills to operate exclusively on recycled feedstock, which can affect safety 

and quality (Biedermann and Grob, 2013; Morris, 2011). Thus, several sources of potential 

contamination are inherent within microwavable packaging.  

 

  

Figure 1.4. Structural Composition of a Microwave Popcorn Bag (Moseley et al., 2000).  

 

Previous Works Measuring Diacetyl in Microwave Popcorn 

Walradt and others (1970) conducted some of the first analyses on popcorn VOCs, and 

identified 36 volatile compounds with some certainty and 20 tentatively identified compounds 
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(Walradt et al., 1970). Buttery and others analyzed popcorn oil in an enclosed 5L round-

bottomed flask equipped with a Tenax trap, which was then microwaved for 2.5 minutes. Results 

found levels of 170ppm of diacetyl, and 200 ppm of 2,3-pentanedione (Buttery et al., 1997). 

Identifying sources of VOC contamination within a converted microwave popcorn bag can be a 

difficult task due to its many layers and constituents.  

Rosati and others (2007) has analyzed VOCs in microwave popcorn placed a microwave 

into an inert chamber and developed a purge and trap mechanism for collecting and analyzing 

VOCs of interest. The authors noted greater than 80% of VOCs released occur at the opening of 

the bag, post-cooking (Rosati et al., 2007). This work focused on a fully converted and filled bag 

and replicated end-use conditions. Furthermore, results showed that most of the VOCs analyzed 

were from flavor and oil constituents.  

Recent work by Zhang and others (2014) characterized fine and ultrafine particle 

emissions from microwave popcorn using a water-based condensation particle counter (Zhang et 

al., 2014). The authors noted a significant increase in total and ultrafine particle emissions in 

microwave popcorn packaging with susceptors, as opposed to a brown paper bag. However, this 

study may have been biased since it incorporated a variable that may contain a recycled 

feedstock; and could thus contain a variety of VOCs that could be more toxic than particulate 

matter generated from the susceptor technology. Headspace temperatures of a bag of filled 

microwave popcorn can reach 200˚C and higher (Risch, 2009), depending on several parameters, 

such as the amount of oil present and the wattage of the microwave. Thus, when converted bag 

structures are subjected to elevated temperatures various volatile organic compounds (VOCs) 

within any part of the bag can be released during cooking.  

The increased awareness of VOCs in high performance-packaged foods (i.e.-microwave 
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popcorn) has also highlighted gaps in monitoring and evaluation of materials throughout the 

production value chain. Furthermore, the cost of monthly testing and evaluation can be 

expensive and cumbersome to many stakeholders. Thus, there is an opportunity to develop and 

evaluate technologies to monitor certain foods and their packaging to provide a higher degree of 

traceability and tighter process controls on safety. This technology could also allow for the 

incorporation of a wider specification of materials, such as recycled feedstocks with varying 

degrees of contamination, into food packaging articles. This could further increase total recycling 

rates for plastic and paper feedstocks, and thus, increase sustainability.  

 

Real-time Detection in Thermoplastic and Paper Packaging 

 

The Impact of Unrecycled Paper and Plastics 

In 2013, approximately 300 million metric tons of plastic were produced worldwide and 

less than half has ended up in landfills or was recycled (Markets and Markets, 2014; NAPCOR, 

2016). Conversely, in 2014 approximately 68.6 million metric tons of paper and paperboard were 

generated in the United States, 64.7% of which was recycled (EPA, US Environmental 

Protection Agency, 2016). Un-recycled and un-landfilled packaging can degrade in the 

environment which can release potentially toxic organic and inorganic products (Bayer, 2002; 

Kirwan, 2012). Globally, recycling efforts have increased in recent years as social and political 

pressure accumulates. The National Association for Polyethylene Terephthalate (PET) Container 

Resources (NAPCOR) reports that approximately 1.8 billion pounds  of PET (about 30.1% of the 

total produced) were recycled in 2015 (NAPCOR, 2016).  NAPCOR also reports that producing 

new products from recycled polyethylene terephthalate (RPET) uses two-thirds less energy than 
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what is required to make products from raw virgin materials and additionally reduces greenhouse 

gas emissions as compared to products made with virgin material (Markets and Markets, 2014; 

Marsh et al., 2007). Unlike thermoplastics, paper and paperboard cannot be recycled an infinite 

number of times. Currently, society uses the term ‘recycling’ in place of ‘recovery’ or 

‘collection’. Additionally, because of many fillers and other additives in papers (i.e.- titanium 

oxide in white ledger), as much as 30% is unrecyclable (Kirwan, 2012).   

 

Contamination associated with recycled materials 

Many components of these materials can also pose potentially negative health and 

environmental effects (Freire et al., 1998; J. Vandenburg et al., 1999; Kang et al., 2011; 

Vandenburg et al., 1999; Welle et al., 2011). Particularly, migration of these compounds can also 

pose a health risk to the consumer (Bach et al., 2011; Haldimann et al., 2013; Keresztes et al., 

2009; Piringer et al., 1998; Schmid et al., 2008). Residual catalyst, if leached into foods or the 

environment, could have potentially deleterious effects (Mihucz et al., 2017). Of particular 

concern in recent years is the widespread use of antimony in the polymerization of PET and 

impact on health and the environment as a result of migration and degradation processes 

(Carneado et al., 2015; Takahashi et al., 2008; Westerhoff et al., 2008). In paper and paperboard, 

residual coatings, inks, and other additives used in products not designed for food contact could 

pose negative health and environmental effects in recycled products, if proper process controls 

are not maintained. Additionally, certain components in secondary packages could migrate into 

foodstuffs via the gas phase (Jickells et al., 2005). 

Migration of contaminants from packaging to items such as food can reduce food quality 

imparting off-odors and unintended flavors; additionally, some contaminants may be toxic if 
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ingested (Cheng et al., 2010; Jrup, 2003; Karayannidis et al., 2007; Widén et al., 2004).  The 

degree of food contamination will depend on its initial concentration in the package, diffusivity 

within the package under the conditions of storage, duration and exposure temperature, and the 

contaminant solubility in the food (Cheng et al., 2010; Jrup, 2003; Widén et al., 2004). 

The use of recycled fiber is an important facet of material and product sustainability, 

however, not all recycled feedstocks are processed with the intention of being incorporated into 

food contact materials. Recycled fiber feedstock may be sourced from many different sources: 

newspapers, journals, printed paper communications, paperboard boxes, corrugated board, and 

can contain a wide variety of chemicals used in the manufacturing and use of these products. 

Thus, they can contain any number of volatile organic contaminants, such as those used in 

adhesives, printing inks, varnishes, and thermo-printing (Biedermann and Grob, 2013).  

 

Regulatory environment of packaging  

In the United States, the FDA does not provide special regulation or preclearance for the 

use of paper or polymeric recycled materials or products used in food contact structures, but is 

rather treated as an indirect additive to food products. Although specific process by which these 

products are manufactured, or the source of their raw materials are unregulated by special 

provision in the CFR, the finished product must meet the same regulatory specifications as virgin 

material, with the exception of paper. Recycled food contact materials also must comply with 

Good Manufacturing Practices (GMP) requirements that apply to food contact materials (21 

C.F.R. Section 174.5). 

General EU legislation (EU No. 1935/2004) requires that all materials produced for food 

contact be systematically tested to ensure compliance at each stage of the supply chain; ensuring 
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the composition of the final material and the potential migrant is known or predictable and 

chemical analysis only must determine known critical compounds. However, specific legislation 

regarding virgin and recycled paper and board materials is not consistent within the EU, and 

adoption of national legislation varies from member state to member state (Grob et al., 2009). 

Thus, if articles are to be sold ubiquitously throughout the EU, they must comply with each 

member state’s legislation, and is subject to the principal of mutual recognition.  

  

Paper and paperboard 

In paper and paperboard, the FDA permits the use of pulp from reclaimed fiber if it 

complies with 21 CFR 176.260 (Food and Drug Administration (FDA), 2016a). Reclaimed fiber 

can be sourced from both post-industry and post-consumer feedstock. Paper and paperboard 

products must not contain any “poisonous or deleterious substance” which is retained in the 

recovered pulp and migrates into the food. Regulatory thresholds have been established for 

certain compounds under sections 406 and 409 of Chapter 9 of the Federal Food, Drug, and 

Cosmetic Act (FD&C Act). These limits vary depending on the nature of the compound, 

application of the package (e.g. food packaging), and conditions of use (e.g., elevated or reduced 

temperatures, acidic or basic, liquid or solid) (Silva et al., 2006). 

With these regulations in view, it becomes important to evaluate these structures for 

potential contaminants that could migrate from various components of the packaging and co-

mingle with food products. Additionally, the use of microwavable packaging has grown in 

popularity over the last 50 years with the rise of busy lifestyles and ageing population. These 

structures require a higher degree of performance and consideration of safety from packaging 

materials and feedstocks (Regier, 2014). One aspect of safety that must be considered, is the 
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potential vaporization and migration of small organic molecules, or Volatile Organic 

Compounds, from packaging materials into foodstuffs.  

 

Regulatory environment of recycled PET 

For example, the US Food and Drug Administration (FDA) has established a 0.05 /in2 

(approximately 0.20 mg/dm2) regulatory threshold of chloroform-soluble extractive migration 

from phthalate polymers into various food simulants. There are additional restrictions with 

respect to additive levels in virgin materials, and thresholds of regulation (TOR) for substances 

used in food-contact articles. Limitations for certain food contact substances (FCS) which have 

clearance for use are regulated within 21 CFR 170.39  (FDA 2016b; 2017). The European Union 

uses a different approach for plastics, where, overall limits are regulated to 10 mg/dm2, and 

specific migration limits (usually in mg kg-1 or ng g-1) under (EC) 10/2011 (2011).  

With all of this in view, it is difficult, if not impossible, to know if the molding/extrusion 

of resultant materials yields a product that meets the Code of Federal Regulations requirement 

without direct measurements of the final product. Current FDA policy mandates that 

manufacturers of food-contact packaging made from recycled plastic are responsible for 

manufacturing materials with specifications similar to packaging comprised of virgin material 

(2006).  Furthermore, the recyclers must demonstrate that the contaminant levels in the 

packaging components are low enough to comply with the CFR and FDA requirements (2006).   

Consumer demands for more sustainable packaging has led to the increase in PCR% 

content labels on many thermoplastic and paper packages. However, the safety of these recycled 

materials must be considered, and are regulated by many governments around the world by rules 

such as The Code of Federal Regulations (CFR) in the United States, which considers food 
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packaging as an indirect food additive. Therefore, risk assessment of packaging from a 

toxicology and regulatory perspective requires an understanding of both packaging-component 

toxicities and predicted levels of human exposure.  Many large retailers and brand owners have 

launched initiatives in an attempt to increase the level of post-consumer recycled plastic and 

safety in packaging (Johnson, 2014), yet the responsibility of safety and environmental 

stewardship hangs on the converters and end users of these packaging materials.   

Agricultural growers and packers utilize plastic packaging for retail convenience foods 

and food service products and are currently the largest users of plastic film and sheeting in the 

U.S. (Markets and Markets, 2014).  Although the chemical and physical properties of packaging 

made from virgin materials may be known initially, externalities such as UV-degradation and 

exposure to other chemicals in the waste stream could significantly broaden the composition and 

overall quality of the material once recovered (Curtzwiler et al., 2011; Heckman, 2005; Markets 

and Markets, 2014; Nerin et al., 2003; Schwartz, 1988; Westerhoff et al., 2008).  The suitability 

of a recycled material for direct food contact, therefore, is directly correlated to the source of the 

waste stream and the recycling method (Franz et al., 2004; Perring et al., 2001; Whitt et al., 

2012).   

The increase in single-stream recycling (i.e.- the incorporation of laundry detergent 

bottles and certain e-wastes) has made it difficult for thermoplastic to be conveniently sorted for 

food-contact materials (Fordham et al., 1995; Karayannidis and Achilias, 2007; Markets and 

Markets, 2014; Nerin et al., 2003; Westerhoff et al., 2008).  Inadequate sorting can result in the 

incorporation of non-food-contact polymers into the recycling feedstock for direct food-contact 

packaging.  The development of technology to monitor and evaluate the safety of plastic 

intended for food-contact materials can be a valuable tool to evaluate safety in real time, and can 
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allow for converters to adjust blend ratios of various streams of recycled and virgin feedstock to 

ensure safety and regulatory compliance. Additionally, these technologies have direct application 

to monitoring more than thermoplastic and paper materials, and can be used to monitor VOCs of 

interest in-situ.  

Overall, the current state of microwave popcorn in both high and low-fat varieties needs 

to be evaluated, and a repeatable method for characterization and quantification should be 

established for microwave popcorn oil. Furthermore, the effects of elevated temperatures on 

DAPORS should be studied in further detail. Continuous monitoring of DAPORS and other 

forms of contamination in both food and packaging should be explored to provide solutions in-

situ characterization in the manufacturing environment. This research has implications for 

stakeholders across the microwave popcorn value chain, including: customers, brand-owners, 

lawmakers, and researchers investigating the safety and sustainability of certain food products 

and their packaging.    
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CHAPTER II 

CHARACTERIZATION AND QUANTIFICATION OF DIACETYL AND POSSIBLE OTHER 

RELATED SUBSTANCES (DAPORS) IN HIGH-FAT AND LOW-FAT MICROWAVE 

POPCORN OIL BEFORE AND AFTER COOKING 

 

Nathan Davis 

Introduction 

Microwave-popped popcorn is a commonly enjoyed snack food around the world. 

Popcorn Production in the United States is a $1.9 billion industry with $140 million in exports. 

45.3% ($860.7 million) of this industry is comprised of un-popped popcorn most popularly sold 

in microwavable packaging (D'Costa, 2016). However, recent claims regarding the ability of 

common flavorings (diacetyl and 2,3-pentanedione) in popcorn oil formulations to cause a 

chronic lung condition, bronchiolitis obliterans (BO), has called the safety of microwave popcorn 

into question(Hubbs et al., 2012).  

BO is an inflammatory condition that affects the bronchioles of the lung; the smallest 

airways within the organ. Many different chemicals can cause lung injury of this kind, such as 

nitrogen oxides, welding fumes, and ammonia. Symptoms of BO include a dry cough; shortness 

of breath; and/or fatigue and wheezing in the absence of a cold or asthma (King Jr, 2003; 

Yousem et al., 1992). Repeated inhalative exposures to 2,3-pentanedione have been shown to 

cause fibrosis of intra-pulmonary airways in rats, demonstrating symptoms similar to BO in 

humans (Morgan et al., 2012). Several studies have linked this disease to exposure to ketone-

type flavoring compounds such as diacetyl Flake and Morgan (2016). And other studies claim 

microwave popcorn could pose a significant health risk to consumers. These claims have been 
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used to justify several considerable lawsuits of note in both plant workers in microwave popcorn 

facilities and consumers.  

Microwave popcorn consists of un-popped popcorn kernels and flavored, salted oil in 

microwavable paper bags with a susceptor laminated between two layers of paper to maximize 

heat transfer. Popcorn oil for microwave applications is predominantly comprised of a semi-solid 

fat with additions of salt and butter-related flavorings. Palm and partially-hydrogenated soybean 

oil are the most commonly used fats in microwave popcorn. However, recent FDA ban on trans-

fats in foods, popcorn oil formulations have shifted to palm oil (Carr, 2016). In 2008 the popcorn 

industry moved away from diacetyl in many popcorn formulations as a response to consumer 

complaints (Carr, 2016). However, compounds similar in chemical structure and taste to diacetyl 

remain in many formulations. There are seven such compounds that are generally related to 

diacetyl and butter-flavor formulations, which are often referred to within the microwave 

popcorn industry as DAPORS (Figure 2.1).    

 

Figure 2.1. Structural identification of diacetyl, acetoin, and 2,3-pentanedione 
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Toxicology of DAPORS 

Endogenous α-dicarbonyl compounds, such as those found in DAPORS (particularly 

diacetyl and 2,3-pentanedione) are among the reactive chemical species associated with the 

tendency to form cross-links with proteins (Miller and Gerrard, 2005). Furthermore, this same 

functional group has the capacity to form advanced glycation end products, or proteins or lipids 

that bind to sugar molecules (i.e.-glucose), specifically its electron-attracting carbonyl groups 

(Figure 1) (Roberts et al., 1999). 2,3-pentanedione has been reported to be even more reactive 

than diacetyl (Epperly and Dekker, 1989; Flake and Morgan, 2016; Hubbs et al., 2012). acetoin 

(3-hydroxy-2-butanone) is a structurally similar compound to diacetyl, and is often included in 

may butter flavor formulations. However, an α-hydroxyketone in acetoin replaces the reactive α-

diketone associated with the toxicity of diacetyl and 2,3-pentanedione (Hubbs et al., 2012). To 

confirm this phenomenon, the US National Toxicology program (NTP) conducted a 90-day 

study on inhalative exposure to diacetyl and acetoin in Sprague-Dawley rats. Significantly higher 

levels respiratory tract lesions from exposures as low as 25ppm of diacetyl were found in both 

rats and mice when compared to acetoin (NIOSH, 2016).   

Numerous studies have linked this disease to inhalative exposure to ketone-type flavoring 

compounds, such as diacetyl (Boylstein et al., 2006; Fedan et al., 2006; Flake and Morgan, 2016; 

Hubbs et al., 2008; Lockey et al., 2009; Rigler and Longo, 2010; Starek-Swiechowicz and 

Starek, 2014; van Rooy et al., 2007). One study claims microwave popcorn could pose a 

significant health risk to consumers (Egilman et al., 2011). This has led to several substantial 

lawsuits in both plant workers in microwave popcorn facilities and consumers. In lieu of official 

regulatory thresholds, a framework such as the threshold of toxicological concern (TTC) may be 

useful in conjunction with current toxicology data exposure levels found in microwave popcorn.  
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Threshold of Toxicological Concern 

The Threshold of Toxicological Concern (TTC) a form of risk characterization originally 

developed by the FDA for packaging migrants in which a certain level of human exposure is 

considered to be of negligible risk based on toxicology data from other similarly structured 

compounds (Munro et al., 2008). These values are typically determined by obtaining the 5th 

percentile of cumulative probability distribution of NOELs for similarly structured chemicals 

(Escher et al., 2010). Frawley (1967) proposed that a general threshold of exposure to food 

packaging materials be employed to predictively identify chemicals which have toxic effects of 

low or negligible risk (Canady et al., 2013; Frawley, 1967). The TTC is designed for low-level 

oral exposures to chemicals. Therefore, quantitative data must exist on the levels of the 

compound in a food product, and the toxicological mode of action should be understood 

(Schrenk, 2016).  

This model has also been applied to food contact materials, flavorings, and aerosols 

(Barlow et al., 2001; Carthew et al., 2009; Cheeseman et al., 1999; Cramer et al., 1976; Munro et 

al., 1996; Renwick, 2004; Schnabel et al., 2015).  The TTC was developed by Munro et. al. 

(1996) who built upon Cramer’s classification which divides chemicals into three classes based 

on structural properties suggestive of varying degrees of inherent toxicity:  

Class I – Substances have simple structures, known metabolic pathways, and are of low 

potential toxicity.  

Class II – Substances with structures less clearly benign than those in Class I, but do not 

have a positive identification of toxicity or are not well studied, which are 

typical of Class III substances.  
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Class III – Substances that contain structural features that have no strong initial 

presumptions of safety, or may even suggest significant toxicity.   

 A procedure was developed by Munro et. al. (1999) to apply the TTC framework to 

flavoring substances, which was then adopted by the joint FAO/WHO Expert Committee on 

Food Additives in 1996, and threshold values were proposed for each of the Cramer classes. 

(Munro et al., 2008). These threshold values were derived by dividing the fifth percentile of the 

distribution of no observed effect levels (NOEL) in each class (Table 2.1) (Canady et al., 2013).  

Table 2.1. A selection of TTC values (oral) proposed in the scientific literature  

Chemical class 

Threshold value∗ 

μg/d μg/kg body wt per d 

Cramer class I 1800 30 

Cramer class II 540 9 

Cramer class III 90‡ 1.5 

Organophosphates 18 0.3 

Nongenotoxic compounds 1.5 0.025 

Genotoxic compounds 0.15 0.0025 

Data from Kroes et al. (2004) and Felter et al. (2009). ∗For oral exposure, based on a body weight of 60 kg. 

‡From Munro et al. (2008). (Canady et al., 2013) 

 

Additionally, others have applied this framework to the inhalative toxicological risk of a 

variety of compounds. Work by Carthew and others (2009) developed corrected no observable 

adverse effect concentrations (NOAECs) and no observable adverse effect levels (NOAELs) for 

local and systemic adverse effects, respectively, to determine an appropriate threshold of 

toxicological concern (5th percentile) for many aerosol ingredients in consumer products (Table 

2.2).  
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Table 2.2. Corrected no observable adverse effect concentrations (NOAECs) and no 

observable adverse effect levels (NOAELs) for local and systemic adverse effects, 

respectively, to determine an appropriate threshold of inhalative toxicological concern (5th 

percentile) for many aerosol ingredients in consumer products (Carthew et.al., 2009) 

Cramer Class 

Local Effects 

5th percentile for local effects NOAEC 

(mg/m3) for 6h day 

5th percentile NOAEL for local effects µg/g 

lung tissue/ day 

1 1.4 54 

3 0.47 18 

1+2+3 0.97 38 

 

Systemic Effects 

5th percentile for systemic effects NOAEL 

(mg/kg/day) 

5th percentile NOAEL for systemic effects 

µg/kg/day a 

1 0.41 410 

3 0.07 70 

1+2+3 0.13 130 

 

Threshold of Toxicological Concern 

TTC for local effects µg/g lung tissue/ day TTC for systemic effects µg/kg/day b 

1 2.1 16.4 

3 0.73 2.8 

1+2+3 1.6 5.1 

a Assuming a rat lung weight of 1.4g.  
b Assuming bodyweight of 60kg. 

  

Thresholds are determined TTC could then logically be used to evaluate the potential 

level of toxicity of flavoring constituents emitted from microwave popcorn during cooking. TTC 

are first determined by gathering exposure data from the food product. This, combined with 

toxicology data yields the histological distribution for establishing the TTC.   
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Previous Works Measuring Diacetyl in Microwave Popcorn 

Initial characterization of popcorn VOCs took place in the 1970’s. Walradt and others 

(1970) conducted some of the first analyses on non-microwave popcorn VOCs, and identified 36 

volatile compounds with some certainty and 20 tentatively identified compounds (Walradt et al., 

1970). Work by Buttery and others found levels of 170ppm of diacetyl, and 200 ppm of 2,3-

pentanedione (Buttery et al., 1997). Identifying sources of VOC contamination within a 

converted microwave popcorn bag can be a difficult task due to its many layers and constituents. 

Rigler and Longo (2004) used scanning electron microscopy to measure the particle size of 

diacetyl from various forms of popcorn flavorings (Rigler and Longo, 2010). Rengarajan and 

Seitz (2004) analyzed flavor compounds from microwave popcorn using a rather elaborate 

supercritical fluid CO2 apparatus in conjunction with SPME and to GC-MS (Rengarajan et al., 

2004). Rosati and others (2007) analyzed VOCs in microwave popcorn placed a microwave into 

an inert chamber and developed a purge and trap mechanism for collecting and analyzing VOCs 

of interest The authors noted greater than 80% of VOCs released occur at the opening of the bag, 

post-cooking (Rosati et al., 2007). This work focused on a fully converted and filled bag and 

replicated end-use conditions. Furthermore, results showed that most of the VOCs analyzed were 

from flavor and oil constituents. Xie et al. (2012), analyzed VOCs in disposable paper packaging 

at various temperatures, but did not characterize volatiles at temperatures higher than 90˚C. This 

work focuses on migration of various compounds into food matrices, and does not address the 

volatilization of these compounds into the consumer’s cooking atmosphere (Xie et al., 2012). 

Recent work by Zhang and others (2014) characterized fine and ultrafine particle emissions from 

microwave popcorn using a water-based condensation particle counter (Zhang et al., 2014). The 

authors noted a significant increase in total and ultrafine particle emissions in microwave 
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popcorn packaging with susceptors, as opposed to a brown paper bag. However, this study may 

have been biased since it incorporated a variable that may contain a recycled feedstock; and 

could thus contain a variety of VOCs that could be more toxic than particulate matter generated 

from the susceptor technology. Headspace temperatures of a bag of filled microwave popcorn 

can reach 200˚C and higher (Risch, 2009), depending on several parameters, such as the amount 

of oil present and the wattage of the microwave. Thus, when converted bag structures are 

subjected to elevated temperatures various volatile organic compounds (VOCs) within any part 

of the bag can be released during cooking. Many flavorings found in microwave popcorn have 

been studied in other food products such as Dairy and other snack foods (Clark and Winter, 

2015). However, literature is sparse that both characterizes and quantifies flavor volatiles in 

microwave popcorn, or seeks to understand how DAPORS are affected by the high temperatures 

of the microwave environment; a critical parameter for establishing a TTC.  

Furthermore, there is no recent work evaluating temperatures reached using laminated 

PET susceptors in microwave popcorn bags. Initial patent filings of susceptor technology show 

the temperature of a bag of microwave popcorn reaching temperatures of 200⁰C and above when 

using a Myglyol (synthetic triglyceride mixture) food simulant. However, there has been little 

work to establish the headspace temperature of a bag of microwave popcorn. The subsequent 

experiments seek to establish the temperature of the headspace of a bag of microwave popcorn 

during cooking; to characterize and quantify DAPORS potentially formed and emitted during 

cooking; and to establish a TTC for the compounds listed based on their concentrations in 

microwave popcorn, and mode of action.       
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Materials and Methods 

Reagents 

The identity of the compounds was verified using reference standards of 2-butanone 

(>99%), 2,3-butanedione (>95%), 2,3-pentanedione (>97%), 2,3-hexanedione (>90%), 3-

hydroxy-2-butanone (neat), from Sigma-Aldrich (St. Louis, MO, USA); and 3,4-hexanedione 

(>96%), 2,3-heptanedione (>98%), and 5-methyl-2,3-hexanedione (>94%) from TCI (Portland, 

OR, USA). Retention times were matched on the multidimensional GC capillary column to the 

samples, and mass spectra were used to confirm m/z qualifying ions to the spectral library. 

Palm oil was obtained from a local grocery store to matrix match standards to samples. 

Blanks were run and subtracted from subsequent calibration samples.  

 

Samples 

High-fat (movie theatre-style) and low-fat (healthy) varieties of microwave popcorn were 

obtained from a popcorn manufacturer. High-fat samples had a total fat content of 36g  

(12g/serving) as palm oil, and 990mg (330mg/serving) of sodium per bag. Low-fat samples had a 

total fat content of 5g (2g/serving) of fat as palm oil, and 625mg (250mg/serving) of sodium per 

bag. The label on both products claimed that neither product contained no added diacetyl butter 

flavorings.  

 

Temperature Profile Analysis 

Filled bags were punctured with a small hypodermic needle at the top of the bag, just 

beneath the manufacturers seam (Figure 3b). The bag was placed into a Sharp (Model: 1000 

W/R-21LT) commercial microwave oven coupled to Tripp-Lite 1000W line conditioners 



www.manaraa.com

34 

 

(Model: LR1000) (Chicago, IL). The wattage of each microwave oven was calibrated according 

to ASTM Standard F1317 (ASTM, 2012). Average wattage output was calculated to be around 

700 Watts. Voltage output from the outlet was measured at 116 Volts (AC).   

An OPTOCON fiber optic temperature sensor (Model P/N: TS3 – 10mm O2) was placed 

into the headspace of the bag with the tip of the probe fully immersed into the package to ensure 

that it would not dislodge during the cooking process. Each bag was microwaved for 2 minutes 

and 19 seconds. Cooking time was determined by calculating the average cooking time of six 

bags of each flavor according to the manufacturer’s instructions (listening for 1-3 seconds 

between pops). The sensor recorded temperature values every second for the duration of the 

cooking time (Figure 2.3).  

 

Figure 2.3. a.) Temperature probe reader used for temperature profiling; b.) Location of 

temperature probe in popcorn bag during cooking 

Sample Preparation 

High-fat (movie theatre-style) and low-fat (healthy) varieties of microwave popcorn were 

opened, and the contents were removed from the package into a glass jar with screw-top lid. 

Samples were heated at 40⁰C just until the oil had melted. Oil was separated from the corn using 
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a glass Pasteur pipette directly into the  20mL amber headspace vials. Not enough oil could be 

removed from the package in the low-fat varieties, and thus, oil was obtained directly from the 

manufacturer. Five (5) grams of oil were weighed into 20mL headspace vials and immediately 

sealed.  

One set of samples from each variety was heated in a 60L convection oven (Thermo 

Scientific, Waltham, Massachusetts, USA)  until it reached a temperature of 190⁰C; the average 

temperature reached in the headspace of a bag of low-fat microwave popcorn. The temperature 

of the oil in the sealed headspace vials was monitored by inserting an OPTOCON fiber optic 

temperature sensor (Model P/N: TS3 – 10mm O2) into a vial filled with 5 grams of palm oil.       

Instrument Conditions 

A Leap Technologies CombiPAL autosampler system (Trajan Scientific, Pflugervill, TX, 

USA) coupled to a multidimensional/gas chromatography - mass spectrometry (MD/GC-MS) 

(MOCON, Round Rock, TX, USA) was used for all analyses (Agilent 7890B GC/5977A MS; 

Santa Clara, CA, USA), and was fitted with two columns in series.  The first column was non-

polar (BPX-2, 83 m x 530 µm x 0.5 µm, SGE-Trajan Scientific, Pflugerville, TX, USA) and 

pressure balanced at the midpoint with a second polar column (DB-WAXETR, 30 m x 530 µm x 

0.25 µm, Agilent Technologies, Santa Clara, CA, USA).  Effluent from the second column was 

split 1:3 by restrictor columns to the single quadrupole mass spectrometer and olfactometery 

sniff port, respectively.  The GC run parameters used were as follows: the injector was held at 

260°C in splitless mode; oven conditions held 40°C for 3 min, the ramped at 7°C/min to 105°C 

for 0min, then 10°C/min to 220°C and held for 1.2 min. Helium was used as a carrier gas at a 

rate of 8.6 ml/min-1. The mass to charge ratio (m/z) range was set between 29 and 280. Spectra 

were collected in scan mode at 6 scans per second, and electron ionization energy was set at 
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70 eV. The MS source was held constant at 230°C and the quadrupole was held at 150°C. The 

instrument was tuned daily prior to analysis.  MassHunter (v. B.07.00.1413, Agilent, Santa 

Clara, CA, USA) and a NIST11 spectral library were used for mass spectra data acquisition and 

analysis. Multitrax Multidimensional Control Software (v. 10.1, MOCON, Round Rock, TX, 

USA) was used for pressure balance programing. 

SPME/GC-MS 

Preliminary experiments were run to determine optimum fiber composition 

(Carboxen/polydimethyl siloxane/divinyl benzene, and carboxen/polydimethyl siloxane) and 

extraction temperature (30⁰C, 35⁰C, and 40⁰C) using a 10ppm standard of diacetyl in palm oil. A 

85 µm Carboxen/polydimethyl siloxane (CAR/PDMS) SPME fiber (57335-U, Sigma-Aldrich, 

St. Louis, MO, USA) was determined to be optimal for sensitivity and appropriate for the 

detection levels associated with the samples for extraction and pre-concentration (Figure 2; 

Appendix I). The CombiPal autosampler used for automated headspace sampling was set to the 

following parameters: 500 rpm agitation speed, 10 min incubation/extraction time at 40 °C, 260 

°C desorption for 2 min directly into the GC inlet.  To prevent carryover between samples, the 

SPME fiber also cleaned in a needle heater (260 °C for 2 min) under flow of ultra-high purity 

helium prior to each analysis.  

Analysis of variance (ANOVA; α < 0.05) and least squares means difference test (Tukey 

HSD; α < 0.05) were conducted on data collected from experiments run with 100ppm standards 

adjusted for high-fat and low-fat sodium concentrations. Results from the ANOVA determined 

that adjusting for sodium concentration had no significant effect on peak area concentrations (p-

value: 0.1488).    
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Analysis of variance (ANOVA; α < 0.05) and least squares means difference test (Tukey 

HSD; α < 0.05) were also conducted on data collected from experiments run with 100ppm 

standards with different fiber compositions and extraction temperatures. Results from the 

ANOVA determined that fiber composition had a significant effect on peak area concentrations 

(p-value: 0.0333), but the effect of extraction temperature was not significant (Figure 8).  

   

 

Figure 2.6. Analysis of variance on the effect of fiber composition and temperature in 

SPME extractions (N=3)  

 

5g of palm oil was weighed into 20mL amber headspace vials. Quantitative analysis was 

done from calibration plots obtained from pure analytical standards (0.1-100µg/g). All tests and 

analyses were conducted in triplicate. Linear ranges, limits of detection (LOD) and quantification 

(LOQ) of the standards are presented in Table 1 of Appendix I.  
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Statistical Analysis 

 Data were presented as mean ± standard deviation. The Analysis of Variance (ANOVA) 

test was used to analyze the differences among group means and their associated procedures for 

each compound, and were blocked by fat content. Differences were tested by the student’s t-test 

to find means that were significantly different from each other. The P-values that were < 0.05 

were considered statistically significant. All data analyses were conducted using SAS JMP13 

software (SAS, Cary, NC).  

Results and Discussion  

Temperature Profiling  

Maximum temperatures achieved under the cooking conditions utilized here varied as a 

function of the amount of oil present in the sample. High-fat samples reached an average 

temperature of 162 ºC, which occurred approximately 20 seconds after the end of cooking 

(Figure 4). A rapid increase in temperature of approximately 130 ºC was observed within the 

first minute of cooking for all samples analyzed.  

Low-fat samples yielded average maximum temperatures of 177 ºC, which occurred 

approximately 5-10s after the end of cooking. Maximum temperature observed in a single 

repetition was 205.9 ºC. A 23ºC decrease in temperature was observed from 1:01-1:36, likely 

due to an endothermic reaction by which the moisture from the popcorn was being vaporized 

causing evaporative cooking effects in the headspace of the bag. The continued increase in 

temperature after cooking is likely explained by the release of latent heat stored in the un-popped 

popcorn kernels and non-instantaneous heat transfer from the environment to the probe. 
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Figure 2.4. Average Temperature of the headspace of high-fat microwave popcorn during 

cooking 

  

Figure 2.5. Average Temperature of the headspace of low-fat microwave popcorn during 

cooking 
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Higher temperatures observed in the low-fat samples could be due to the lower total fat 

content, thus more efficiently heating the headspace and generating higher temperatures. It is 

also worth noting that scorching and gas bubbles often occurred between the metalized susceptor 

and inner layers of the package in low-fat samples.  

 

SPME GC-MS Analysis 

The results of the quantitative analysis are outlined in Table 2.3 below with TTC values 

based on the Cramer Class (CC) of the compound. Of the seven compounds tested for in high-fat 

microwave popcorn oil samples, 2,3-hexanedione was found in the highest concentrations in 

high-fat samples, followed by acetoin, 2,3-pentanedione, acetyl valeryl, and diacetyl was found 

in the lowest concentrations. After exposing the high-fat samples to elevated temperatures, 

increased levels of diacetyl, 2,3-hexanedione, acetoin, and acetyl valeryl were observed. In low-

fat samples, High concentrations of acetoin, 2,3-pentanedione, diacetyl, and acetyl valeryl were 

found. After heating, Increased concentrations of diacetyl were observed, while acetoin, 2,3-

pentanedione, and acetyl valeryl showed decreasing concentrations. 2,3-pentanedione was the 

only compound found to have a significant decrease in concentration after heating (p-value: 

0.0082) in both high and low fat samples. Additionally, there is moderate evidence to suggest 

that concentrations of diacetyl significantly increased after heating (p-value: 0.0284) in both high 

and low fat samples. This may be due to breakdown of higher carbon-chained DAPORS, or 

thermodynamically favorable chemistries reacting with other constituents within the bag during 

elevated temperatures, such as the Maillard reaction and Strecker degradation with dicarbonyl 

groups (Coultate, 2009).  
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Table 2.3. DAPORS Identified and concentration (mg/kg), retention time (RT; min), molecular 

formula, threshold of toxicological concern (TTC) proposed levels*, Cramer Class (CC) 

RT

(Min)

High-fat 

Amount 

(ppm)

Low-fat 

Amount 

(ppm)

High-fat 

Amount 

(ppm)

Low-fat 

Amount 

(ppm)

4.5
diacetyl                            

(2,3-butanedione)
CH3COCOCH3 431-03-8

0.28 ± 

0.05
A

9.43 ± 

0.56
B

0.67 ± 

0.04
C

14.16 ± 

1.90
D 5.1 9 II

6.3 2,3-pentanedione CH3CH2COCOCH3 600-14-6
9.04 ± 

1.11
A 

80.94 ± 

1.64
B

5.47 ± 

0.05
C

24.92 ± 

1.55
D

2.8 1.5 III

8.3 2,3-hexanedione CH3(CH2)2COCOCH3 3848-24-6
32.61 ± 

8.09
A

< LOD
41.63 ± 

8.44
A

< LOD 2.8 1.5 III

8.7 3,4-hexanedione CH2CH2COCOCH2CH3 4437-51-8 < LOD < LOD < LOD < LOD 2.8 1.5 III

9.3
acetoin                               

(3-hydroxybutanone)
CH3COCH(OH)CH3 513-86-0

19.12 ± 

2.31
A

348.71 ± 

6.80
B

49.21 ± 

1.36
A

253.92 ± 

11.81
B 16.4 30 I

9.5
5-methyl-2,3-

heptanedione
(CH3)2(CH2)3COCOCH3 13706-86-0 < LOD < LOD < LOD < LOD 2.8 1.5 III

11.1
acetyl valeryl                    

(2,3-heptanedione)
CH3(CH2)3COCOCH3 96-04-8

4.90 ± 

1.57
A

4.29 ± 

0.35
A

5.91 ± 

1.56
A

3.97 ± 

0.23
A

5.1 9 II

TTC (µg/kg 

body wt. per 

day; oral)**

CCCompound Molecular Formula CAS No

Before Heating
After Heating to 

190⁰C
TTC (µg/ 

day from 

inhalative 

exposure)*

*

 
*Different letters indicate significant differences between compounds. (N=12). 

**Proposed levels are adapted from Carthew et.al. (2009). Inhalative thresholds assume a human bodyweight of 

60kg.  

***Linear Ranges, LOD, and LOQs are available in Appendix I. 

 

Levels of diacetyl and 2,3-pentanedione have significantly decreased from levels 

previously measured in popcorn (170ppm and 200ppm, respectively) (Buttery et al., 1997). 

Discussions with suppliers indicated that total fat content is based on the total weight of the oil 

slurry (oil, flavor, salt, coloring, etc.). Thus, it was determined that the true amount of oil per bag 

for high and low-fat varieties was 33.3g and 2.4g, respectively. Based on the data collected, an 

approximation of DAPORS per bag, and their potential concentrations after cooking are 

organized in table 2.4 below. Assuming an individual inhales the entire vaporized contents of a 

bag of microwave popcorn, consumers could be inhaling considerable amounts of DAPORS 
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which may cause deleterious effects to pulmonary function. However, it is important to note the 

previous work of previous literature which notes that greater than 80% of Volatiles are released 

upon opening of the bag (Rosati, 2007).  

 

Table 2.4. Determination of total DAPORS per bag of microwave popcorn in high and low-

fat varieties.  

DAPORS 

Oil Content per Bag 

(g) 

Total before heating 

(µg/bag) 

Total After Heating 

(µg/bag) 

Opening bag after 

cooking   (80% loss) 

H L H L H L H L 

diacetyl 33.3 2.4 9.3 22.6 22.3 34.0 4.5 6.8 

2,3-pentanedione 33.3 2.4 301 194.3 182.1 59.8 36.4 12 

2,3-hexanedione 33.3 2.4 1085.9 N/A 1386.3 N/A 277.3 N/A 

acetoin 33.3 2.4 636.7 836.9 1638.7 609.4 327.7 121.9 

acetyl valeryl 33.3 2.4 163.1 10.3 196.8 9.5 39.4 1.9 

 

 

TTC Approach to Evaluating Inhalative Toxicity 

Four of the eight chemicals of interest were found to be Cramer Class III compounds. 

Diacetyl was found to be a Cramer Class II compound. TTC and Cramer Class data was not 

available for 2,3-heptanedione. In low-fat popcorn, diacetyl and 2,3-pentanedione levels were 

found to be higher than proposed TTC levels. After adjusting DAPORS levels to account for 

total amount per bag of microwave popcorn, and adjust for loss upon opening of the bag, 

Diacetyl was found to be within the TTC limit of 5.1 µg, indicating Diacetyl may not be as 

serious of a health concern as some claim. However, levels of other DAPORS of interest are 

several times higher than the TTC in both high and low-fat samples.  



www.manaraa.com

43 

 

Additionally, levels exceed the NIOSH proposed STEL values of 25ppb (15min), 75ppb 

(5min) and 375ppb (1min) for diacetyl; and 31ppb (15min), 93ppb (5min), and 375ppb (1min) 

for 2,3-pentanedione by several orders of magnitude (NIOSH, 2016). The results obtained, as 

well as samples corrected for serving size and loss of volatiles to the atmosphere, were much 

higher than NIOSH recommended levels. However, many consumers are not exposed to the 

same concentrated levels of DAPORS as those found in many microwave popcorn production 

facilities. Therefore, careful consideration and account for the context of the NIOSH regulations 

should be taken when attempting to extrapolate these levels to the average consumer.  

 

Conclusion 

This study characterized and quantified DAPORS found in high-fat and low-fat microwave 

popcorn, and the impact of the high microwaving temperatures on such compounds. Elevated 

amounts of 2,3-pentanedione, acetoin, 2,3-hexanedione, and acetyl valeryl were found, and 

exceeded proposed TTC inhalative thresholds as well as NIOSH recommended standards. Levels 

of diacetyl were found to be in amounts that fell below the threshold of toxicological concern.  

Of the seven compounds tested for in high-fat samples, 2,3-hexanedione (32.61 ± 8.09) was 

found in the highest concentrations in high-fat popcorn samples, followed by acetoin (19.12 ± 

2.31), 2,3-pentanedione (9.04 ± 1.11), acetyl valeryl (4.90 ± 1.57), and diacetyl was found in the 

lowest concentrations (0.28 ± 0.05). After exposing the high-fat samples to elevated 

temperatures, increased levels of Diacetyl (0.67 ± 0.04), 2,3-hexanedione (41.63 ± 8.44), acetoin 

(49.21 ± 1.36), and acetyl valeryl (5.91 ± 1.56) were observed. In low-fat samples, high 

concentrations of acetoin (348.71 ± 6.80), 2,3-pentanedione (80.94 ± 1.64), diacetyl (9.43 ± 
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0.56), and acetyl valeryl (4.29 ± 0.35) were found. After heating, increased concentrations of 

diacetyl (14.16 ± 1.90) were observed, while acetoin (253.92 ± 11.81), 2,3-pentanedione (24.92 

± 1.55), and acetyl valeryl (3.97 ± 0.23) showed decreasing concentrations.   
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ABSTRACT 

Post-consumer recycled (PCR) plastic material is made by collecting used plastic products (e.g., bottles 

and other plastic packaging materials) and reprocessing them into solid-state pellets or flakes. Plastic 

recycling has positive environmental benefits, but may also carry potential drawbacks due to unwanted 

organic and inorganic contaminants. These contaminants can migrate into food packaging made from 

these recycled plastic materials. The purpose of this research was to identify economically viable real-

time monitoring technologies that can be used during the conversion of virgin and recycled resin 

feedstocks (i.e., various blends of virgin pellets and recycled solid-state pellet or mechanically ground 

flake) to final articles to ensure the safety, quality and sustainability of packaging feedstocks. Baseline 

analysis (validation) of real-time technologies was conducted using industry-standard practices for 

polymer analysis. The data yielded supervised predictive models developed by training sessions 

completed in a controlled laboratory setting. This technology can be employed to evaluate compliance 

and aid converters in commodity sourcing of resin without exceeding regulatory thresholds. Furthermore, 

this technology allowed for real-time decision and diversion strategies during the conversion of resin and 

flake to final articles or products to minimise the negative impact on human health and environmental 

exposure.
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CHAPTER IV 

GENERAL CONCLUSIONS AND FUTURE WORK  

  

The overall objective of the work was to characterize and quantify levels of diacetyl and 

possible other related substances (DAPORS) in microwave popcorn and estimate their potential 

health risk to the consumer using a threshold of toxicological concern framework combined with  

proposed regulatory thresholds. Secondarily, this work established the theoretical basis for real-

time monitoring applications in certain food and food packaging applications; namely detection 

of volatile organic compounds (VOCs).  Table 4.1 summarizes the results of the analyses 

detailed in chapter’s 2 and 3. The first study (Chapter 2) focused on identifying key cooking 

temperatures and heating rates in current microwave popcorn packages to determine the 

temperatures achieved during cooking. These parameters were then used to heat the oil to 

observe any changes in composition or quantity of DAPORS being released. Results indicated 

that initial levels of diacetyl and 2,3-pentanedione were well above proposed regulatory 

thresholds, and the inhalative threshold of toxicological concern proposed by Canady and others 

(2013). After heating, Increased levels of diacetyl were found in low-fat popcorn varieties. 2,3-

pentanedione levels also increased.  

The second study (Chapter 3) identified economically viable real-time technologies to 

monitor and evaluate the safety and performance of virgin and recycled thermoplastics. Baseline 

analysis was conducted using industry-standard practices for packaging analysis in a controlled 

laboratory setting. Predictive models were generated via a series of training sessions of known 

variables to generated the model. This technology allowed for real-time decision and diversion 

strategies during the conversion of virgin and recycled feedstocks to mitigate the introduction of 
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excessively toxic materials into the environment; thus improving safety and end-of-life 

sustainability. This technological framework has applications in monitoring the safety of 

microwave popcorn and its packaging. Sensors such as FT-IR can be used to continuously 

characterize and quantify DAPORS in real-time to monitor changes in formulations, deviations 

in process controls, and improve the safety of these foodstuffs for both the plant employee and 

the consumer.  

Overall, this research has shed light on the current state of microwave popcorn in both 

high and low-fat varieties, developed a repeatable method for characterization and quantification, 

and studied the effects of elevated temperatures on DAPORS. Additionally, this work proposed 

solutions for continuous monitoring of DAPORS in-situ with the ability to characterize in-plant. 

This research has implications for stakeholders across the microwave popcorn value chain, 

including: customers, brand-owners, lawmakers, and researchers investigating the safety and 

sustainability of certain food products and their packaging.    

 

Table 4.1 Summary of Diacetyl Characterization and Real Time Monitoring Results 

Thesis 

Chapter 

Analysis or 

Technique 
Notable Results 

2 Temperature Profiling Temperatures of the headspace of microwave popcorn can 

reach average temperatures of 180⁰C and higher.  

 

2 SPME/GC-MS Levels of  2,3-pentanedione, action, 2,3-hexanedione, and  

acetyl valeryl were found in elevated levels in both high 

and low-fat popcorn oil. These concentrations were above 

both the TTC levels and NIOSH proposed levels.  

 

2 SPME/GC-MS Levels of diacetyl were within the threshold of 

toxicological concern (TTC) in both high and low fat 

varieties of popcorn, after correction for serving size and 

loss of volatiles to the atmosphere.  
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Table 4.1 Continued. Summary of Diacetyl Characterization and Real Time Monitoring 

Results 

3 Real-time Monitoring Applications for monitoring levels of DAPORS in-situ are 

feasible, and could be incorporated into a filling line for 

continuous monitoring.  

 

3 Real-time Monitoring Real-time monitoring technology is a valuable tool that can 

be incorporated into regular testing schema to enhance and 

improve the safety and quality of the manufacturing and 

end-user environment.  

 

Future Work 

Future work in Chapter 3 objectives should focus on extending the core concepts of real-time 

monitoring to paper packaging materials, and monitoring of DAPORS in the manufacturing 

environment using an array of sensors and combined predictive neural network. Technology to 

both spectate and quantify volatile compounds of interest in real-time is scant. Given the large 

and dynamic range of VOCs, speciation is also an important parameter of continuous monitoring 

to ensure proper process control and identify continual ‘bad actors’ in the process. An example 

of one sensor (out of a plurality) is Fourier Transformed Infrared Spectroscopy (FT-IR). 

Vibrational spectroscopy has been used for a wide variety of applications, and has become a 

universally accepted method for both qualitative and quantitative analysis of a multitude of 

compounds. Several DAPORS have also been studied, both in isolation and in application, using 

FT-IR techniques (Figure 4.1) (Gómez-Zavaglia et al., 2003; Povolo, 2011). The development 

and employment of this technology could have a positive impact on the microwave popcorn 

industry and potentially revive the segment. Moreover, real-time monitoring technology can be 

applied to a wider variety of VOCs of interest; such as those regulated by the State of California 

in Proposition 65, and can be tailored to individual requirements and performance metrics.  
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Figure 4.1. Sample Infrared Spectrum of diacetyl (2,3-butadione) collected in the gas phase 

using Gas-Chromatography/ Mass Spectrometry/ Infrared Detection 

(GC/MS/IRD) (NIST, 2009) 
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APPENDIX DIACETYL SUPPLAMENTAL INFORMATION 

 

 

Figure A1. Schematic Views of Normal Bronchioles and Bronchioles with Bronchiolitis 

Obliterans (Barker et al., 2014). 

 

a.) 

b.) Normal Bronchioles c.) Bronchiolitis Obliterans 
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Table A.1. Calibration standards for linear range, limits of detection (LOD) and 

quantification (LOQ) (mg/kg).  

Compound Linear Range LOD LOQ 

2,3-butanedione 0-10 0.454 0.999 

2,3-pentanedione 0-50 0.010 4.844 

2,3-hexanedione 0-50 0.487 0.844 

3,4-hexanedione 0-100 0.098 0.101 

3-hydroxy-2-butanone (acetoin) 0-100 4.106 11.023 

2,3-heptanedione 0-100 0.429 0.506 

 

 

 

Figure A.2. Area counts versus concentration for 2,3-butanedione (diacetyl) 
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Figure A.3. Area counts versus concentration for 2,3-pentanedione (acetyl propionyl) 

 

Figure A.4. Area counts versus concentration for 2,3-hexanedione 

 

Figure A.5. Area counts versus concentration for acetoin (3-hydroxy-2-butanone) 



www.manaraa.com

56 

 

 

Figure A.6. Area counts versus concentration for 3,4-hexanedione 

 

Figure A.7. Area counts versus concentration for 5-methyl-2,3-hexanedione 
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Figure A.8. Area counts versus concentration for 2,3-hepanedione 
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